Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231216.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231216-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231216.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231216.tar.gz
Algorithm Hash digest
SHA256 caa0aee0f13f1e0676358a41f0602597e5dc317e7fec3f5e8b0b839c2c1a171a
MD5 216ee9a2ce7a8ab42a99d5f803cfc3d0
BLAKE2b-256 df7d386820ef11eaa787dea925334135cb3961c5e7627634e3bd019bc53ba702

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231216-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231216-py3-none-any.whl
Algorithm Hash digest
SHA256 be9df71cdf69463352980a911974dfe1f64f2fbac7081a63636438356b1d0bd0
MD5 a570c14f2e4aa6bd78d21ff509c0c3a5
BLAKE2b-256 eda1101174cd8a025d5468ce38e3d08029444f6d94fdabdbe4e10b13c3c8c54b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page