Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231217.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231217-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231217.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231217.tar.gz
Algorithm Hash digest
SHA256 a405bf6a5e8e53b5720fcec358e9c0cef4d505adc46dff90aa960d7ab7b0b48f
MD5 5e32032f04e069d8e0f906c652f70794
BLAKE2b-256 eed515c44efbdde48ccb0057a1330271a3e208b33a337ef45017c5f1a93fec30

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231217-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231217-py3-none-any.whl
Algorithm Hash digest
SHA256 d5cbc787440f4378d681461d8186e16843b7edb5a515e65d2e4a153b77469ccf
MD5 2a0d6de020d590fe117236bd1e70f60e
BLAKE2b-256 f421bcc009d2799dca60d28ab1103ba142e32fbb41c3725a17d26803bcea8f95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page