Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231218.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231218-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231218.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231218.tar.gz
Algorithm Hash digest
SHA256 a1d32cb3349eeafe6e49ec1e40e8dc387e5e592a543ebf84762148965776a91d
MD5 4c77f6d4edd1872db689bba860c0242b
BLAKE2b-256 cb4dd5a4197d681fef42ab5bad5fdc3904b26ca536ffb64cfd885413527d1a12

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231218-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231218-py3-none-any.whl
Algorithm Hash digest
SHA256 0478f66ca58916a6016713eb39e5bd590261bbaecfd9c429b077e5f4eb433549
MD5 63a67d7cc2bdf2f70dfe7beca0acf82d
BLAKE2b-256 22c96e166329970c9926c5327aab905bdb383886ae66afd94c665c9a63fce3d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page