Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231219.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231219-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231219.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231219.tar.gz
Algorithm Hash digest
SHA256 47fa790b4d180d93d9f5d87f62e239cf3faf284895f3701fb11235262c0e67c5
MD5 ca795b5333397f3695ff0d9222fe54d2
BLAKE2b-256 0201717f89fd4eb59911133d62ec6f62a97905d0866a4e31c0802846dd12d58e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231219-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231219-py3-none-any.whl
Algorithm Hash digest
SHA256 e48d179fa3ab80a724681792de698c85e0a6b9003dd49628b1c8be2a006086b2
MD5 407aff9e32c1d0dfd1a4aaf438660189
BLAKE2b-256 2de3734f11e6fa7feab63e24300a228c81c54c06855f1e002fea50a662bbd0ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page