Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231220.tar.gz (59.7 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231220-py3-none-any.whl (81.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231220.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231220.tar.gz
Algorithm Hash digest
SHA256 aceeef2d1b016a3e6417341038ef7995b94de58e0450793a8016798e4e192764
MD5 b031838c46e1171848fb72da44bd087c
BLAKE2b-256 6168c671d178427aeaeaf2265eaecbf00287d1926ef5b1c9db65df3a29611f70

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231220-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231220-py3-none-any.whl
Algorithm Hash digest
SHA256 8acd1caae1623e576b26e5a4484ebc75ec7772f08d31e7c42c976a2c34351ba7
MD5 4297766c023aa962f70092c315b007b8
BLAKE2b-256 4cded70b9953fc4abf27b2492d0525e31a2dd2454c7cc12724f00a37c142aeab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page