Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.0b20231221.tar.gz (59.7 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.0b20231221-py3-none-any.whl (81.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.0b20231221.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.0b20231221.tar.gz
Algorithm Hash digest
SHA256 5d322b0a6af07c07f396d0a1d19622808de0c7ea45d722b0a6443f946b72b691
MD5 08fd4f094c7b505538e6bad5cb2232cc
BLAKE2b-256 19a5fdf66204d9ad651abd92870ae2949e1b89ff27e45e796c4753811878e462

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.0b20231221-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.0b20231221-py3-none-any.whl
Algorithm Hash digest
SHA256 e1f0b5545991151b8e2930e1ead281c6cd002b5c4df1b543e9a6a54ab8cc35ac
MD5 135c65ccfdf668d5d91930847b3eea95
BLAKE2b-256 19aafaad94629f6f154ba6e012321d5f632a3dad0e3dcd89ff06a6cea0d7506a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page