Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231222.tar.gz (65.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231222-py3-none-any.whl (90.9 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231222.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231222.tar.gz
Algorithm Hash digest
SHA256 33cb87232b23bcbd7d8c8f2f8083d72367b87cdce1b7f9647c9924797d9763b1
MD5 cbb6d51ec59f276f5c663fe83d1a15f5
BLAKE2b-256 95203b36c4398bf0375728c267692a14442ba3c643f1c52a71a8d6306a65d50e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231222-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231222-py3-none-any.whl
Algorithm Hash digest
SHA256 c2b6546ce8be0ce6f42bdc286ba252c2c0743050865ad4040d2b02d5f33264b9
MD5 6e07421b58ee1b56cdf990587d862860
BLAKE2b-256 638d9182b11da0596190b7517983b2536558b8bce66684a1658fd2c6611e85ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page