Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231223.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231223-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231223.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231223.tar.gz
Algorithm Hash digest
SHA256 7027340addce7eadabf4babb0571d407f4e3048ea486a8b2b76201170cb55cc7
MD5 dd2c7800d696044a9e139203b7ab6c58
BLAKE2b-256 97b7e30f838beff9c4010eb58520e8fd377b7e3b5616adeba05c5aea56f41276

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231223-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231223-py3-none-any.whl
Algorithm Hash digest
SHA256 9949054d2c2dd5bd6eeeaff8975f0c1f5cdd6f05264933fbfd94062622289cbf
MD5 9be44a1865b2c6c802f0b2b68573b15d
BLAKE2b-256 c758e1562866a46cfd56c4e15c9e82bf1ec498d8e33be5b4a22b644870e52b8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page