Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231224.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231224-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231224.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231224.tar.gz
Algorithm Hash digest
SHA256 aba7897f680995d0e69c7670a0f9878e39a3c64cd69841faacc8bd51b262d3e3
MD5 3d8d03805461060a13dc8d381a3887f6
BLAKE2b-256 6ec61eac85029b75822f5dc37662ace0600481a4c2a05ad774ab4c6c00b2f42e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231224-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231224-py3-none-any.whl
Algorithm Hash digest
SHA256 3b8d63fdfb9f953b86c86d566cb4ecade3ce9bc1e4a4e3dadc9873b47ad5fe01
MD5 c292dfda6e3abd118463254a80545faf
BLAKE2b-256 d511bc23cac6022d2ae3b33b3bb74ce63592042d8713624b574cca573451fd79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page