Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231225.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231225-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231225.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231225.tar.gz
Algorithm Hash digest
SHA256 986fa0b106ac46ad896b5a0357370577e3d8177692d3939c628bcadd54733a59
MD5 1a84fcb789bec48f8479487af43e6bb9
BLAKE2b-256 415f598490de71c9fa70bfae40df93c305224092d2874004c037542d303647cb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231225-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231225-py3-none-any.whl
Algorithm Hash digest
SHA256 b45b0ed4f1437478ca9fa1ddc7f96eac140418ef1205ca85d6a6392dd65fd789
MD5 5846c0baaaf60bc11157d43b1fa63e08
BLAKE2b-256 1c3a2f1327eac40aeac264b1a7c901697243d29a8b876a00beaebe88f16d02be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page