Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231226.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231226-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231226.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231226.tar.gz
Algorithm Hash digest
SHA256 b2f024290b15a5cfed46264fc31dea162dfdbc2f2d9db5225da7a28dbf8ba62a
MD5 80f5311a71817872bbfa8891fa383e4b
BLAKE2b-256 45c0bfc9477fa37f77b411094ee3b055f06f7f431abca48a688d28b412a21521

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231226-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231226-py3-none-any.whl
Algorithm Hash digest
SHA256 681574683f25767c20504c36123796afc18eb396e3669c3358b7f0ac92142552
MD5 d9772582133026d038484fa42dd9c3b5
BLAKE2b-256 c10ae71465b4b2b58d881ed174a8bcd2f39617613804104203bf72528f2e1012

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page