Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231227.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231227-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231227.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231227.tar.gz
Algorithm Hash digest
SHA256 5b5e9c4896d4054209a3e9434d4814ddf007a16a943a7802677a5a3cbff90e61
MD5 e4049326a0882b21785a6793d3ef0690
BLAKE2b-256 4862ae30873ffa18db779772725478aa4730c938571c6ae7df185995c2887697

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231227-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231227-py3-none-any.whl
Algorithm Hash digest
SHA256 00644c2e4c5e7f299aeeaea5140050c053c0a4cec727e5df95873a02cbf22002
MD5 2fb4db3717ea1a2af71b21407471cf53
BLAKE2b-256 dec604b3f94a5c5d3ca14f24426674e6d61f535a291d8cbe7bdcc2931dd24fcc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page