Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231228.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231228-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231228.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231228.tar.gz
Algorithm Hash digest
SHA256 0d6f24bbd9d8174d7ea063bd8073fd8c59f7419f7b72802d88a5d1d6136a1aff
MD5 1eed31bc32d3a17f8730f2b343dee494
BLAKE2b-256 bad68cc9c0973a72b3b1e6619e61deb4c8109e1ce8d74851542aabfa51bb8120

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231228-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231228-py3-none-any.whl
Algorithm Hash digest
SHA256 5b2a38ad6555d6dfa47844047a8fee68f9648a61e6c618e49bfefca5a752e5a2
MD5 402fcdea2888e09cf06e8d336d9f8a31
BLAKE2b-256 87dcca9c7d5c2a7e5dc3ef7c64fb8fcbc677d340c48bc9dc3595b46efe45f835

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page