Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231229.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231229-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231229.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231229.tar.gz
Algorithm Hash digest
SHA256 ce92d1083131ffb3d2c93dac58ae1e068ed7744ac461b63c5898e7c887c558e5
MD5 782c7be55fd3cf624ff8d944e8a1d227
BLAKE2b-256 71c0b4adf14668bc09ab4c365d271295dbfea59386178f1018375d1207cc88b0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231229-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231229-py3-none-any.whl
Algorithm Hash digest
SHA256 f7ebd5085067ee95fbb57fa89fd41ac7741100ca61d394eed0ba9253d640fc41
MD5 cc0853e453923c8f73013b473e1fc35a
BLAKE2b-256 93ac82cbe722bbf4539ebd7232c587297102e9897aee2fe36cab60f42605e0b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page