Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231230.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231230-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231230.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231230.tar.gz
Algorithm Hash digest
SHA256 f25cab425c670439a8dafce531c3aa0a9fbae9aa25bedab300a757e4ad956eda
MD5 7741932f026f09afe88464560f27c46d
BLAKE2b-256 a476fe5c7d8a8376fd1768c4f60867521f17b8aeedbe19002cd03b66d0e090e9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231230-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231230-py3-none-any.whl
Algorithm Hash digest
SHA256 fd717dd544e470d05bd37665783578f67f003e4c0357354955f8476ad2020e80
MD5 b6e7f867336abcf4723d436bbeefbf28
BLAKE2b-256 26d06426bbfcef38eafad70cb14700e82c7652d67fb70fdf24fce754df36c468

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page