Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20231231.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20231231-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20231231.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231231.tar.gz
Algorithm Hash digest
SHA256 97f10b81fc4048aa1a4efe67b5713c6f634d4fed46cde72746fb9ba59a505817
MD5 c77d0e5d7656d68ce2195b7fda063df2
BLAKE2b-256 749bf634224e49f499de8a5cef938dd8d9ecfc0595d2ab51076ff6f4d3ef4bb6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20231231-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20231231-py3-none-any.whl
Algorithm Hash digest
SHA256 522038ea92fcba70488650e9ae86b242f491867ce3d696d12513ced5f40bc54a
MD5 ef008b112ec923be433978dd2e695963
BLAKE2b-256 cb890faffc0d12ab1c573321e7b06d05065ec0e1e0eca751f464d0de44532e01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page