Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.3.1b20240101.tar.gz (65.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.3.1b20240101-py3-none-any.whl (92.0 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.3.1b20240101.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20240101.tar.gz
Algorithm Hash digest
SHA256 0a06ec6308e119193fbb0141e059f63ca457d46f748ff9a874f0fd2c0ef4819a
MD5 83e3ab8fc88c7d4f2bd9b216be5b0a5f
BLAKE2b-256 1c4fb15472734dfb580906dd3cff0ac2239e264ded40c7f8d22669144f2f53cc

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.3.1b20240101-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.3.1b20240101-py3-none-any.whl
Algorithm Hash digest
SHA256 d48aabdef08707daec1ce1d3d686e11b27410c6932eb9de42e5f5a65c38a233e
MD5 ddd1925a67310a3e2030d945d1de6616
BLAKE2b-256 214372d74f8406ba893668daffad6693db089e58015198b7a56fdbd5455f5bc0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page