Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240517.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240517-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240517.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240517.tar.gz
Algorithm Hash digest
SHA256 f915afd4d4385cb7fe26d80586cd46901d7c9f40301ac6397a85e8c052293d02
MD5 fabda7980c2c1006146bfa67fd7bae61
BLAKE2b-256 9eaf3a5881b0f39dc48a5fc3218e5ada4c4f116e9ce93bd05e990b9e316bac75

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240517-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240517-py3-none-any.whl
Algorithm Hash digest
SHA256 70f73244974b03fa04c140477b1b68eb130fbb409543ccc878aea3304e961faf
MD5 9ed3f6cd3e1147a97bca39a12486b01a
BLAKE2b-256 7fd6d4aed0da5ff2a1c09f7a9a57b7cec9820c978a0e94187ab3f24b0ff1c82f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page