Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240518.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240518-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240518.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240518.tar.gz
Algorithm Hash digest
SHA256 3cd7c0a54645e498f02df8044c1414ff5d27f689780537ba9b1a39cce6efd1ed
MD5 d992c6a4e7f90ee1e382d46aaa28c3af
BLAKE2b-256 d8f06cc5c5154cb6d990656fad4c3d1f0619bd994e898509cd36325af27099a0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240518-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240518-py3-none-any.whl
Algorithm Hash digest
SHA256 cd7728437950a28d137b0dc87f2e139fcfc958ee7ddaa8bd753ee65d1ea366a9
MD5 c6621ff90533191ec754de35b93d31b6
BLAKE2b-256 0e4e6505eb13c8e48990f845cdcba4fad4d98d63e7e3c4f5494462cfd0290a59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page