Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240519.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240519-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240519.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240519.tar.gz
Algorithm Hash digest
SHA256 b137eb139c57bb4f41811f42c2e9241efda9c332fe13034ca1f4fefb69e5fb95
MD5 5385d9b91c5acef760b3baa7ea3abdad
BLAKE2b-256 ecd556aa116f348f90da3920af7e94642e11427e1e8e51161cace59c754330b9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240519-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240519-py3-none-any.whl
Algorithm Hash digest
SHA256 629dff85a5054c2191cf9b39dc28d1e42eabc975ff386600c2a8a9270fa71e64
MD5 9e5c9895f657caf228779a955cdfba38
BLAKE2b-256 912b3c321ca90a2c61e7b09c85e03e7ec49edeb4a18e68a524a454e31ca3b23b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page