Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240520.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240520-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240520.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240520.tar.gz
Algorithm Hash digest
SHA256 659f270215b4c445d7ec926d7402d8fdbc310d28789548c7a8d34b6314435cba
MD5 9c2eca03cb7f54545777881a3efca06b
BLAKE2b-256 81e5c778311a2fd9ab433d5232a6cf56ac1183b9d555cb13ed35b275b1f9ecc4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240520-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240520-py3-none-any.whl
Algorithm Hash digest
SHA256 070b90c8dccae3d2c85750a9a682ea1c2f7f180a83c59428cb2d322eaf6eea5a
MD5 75de9a57e90c3a463fc90575df9ee5d4
BLAKE2b-256 0712a12f04f26e36f2b12b9e967ad94f088264537c457e1a2d54976d8abd27c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page