Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240521.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240521-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240521.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240521.tar.gz
Algorithm Hash digest
SHA256 9edc6618241b64f8f45a8187e540a5f7385ebebc664f1f4c3edcd9cc854a547f
MD5 3c6f97197b22eb1d076e58313dcb50dc
BLAKE2b-256 433b436225d6344d1ddc5e190f93861d781a7d13ab7b961ae1b002e126dc635a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240521-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240521-py3-none-any.whl
Algorithm Hash digest
SHA256 49cd2ba038979f4ff3c95b4a8cac6fa1e3b43d0260dcaace10c3671d550b6934
MD5 69a7231a9ac0d19f5f48b935e44a166a
BLAKE2b-256 a9c9fa404de7f797f8fcd090503f4c223590402adc636fc578767a1aa23f6e16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page