Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240522.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240522-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240522.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240522.tar.gz
Algorithm Hash digest
SHA256 94049c52b370e65ef5835e668deba7630ddb4117340b6b20b411cc892d381328
MD5 118b3379a85018b4f3930f0d6c7855d0
BLAKE2b-256 e707cccc8b9a23ffe37f3ef79efccac878312cbc2340af0a1e660cc5127d4b52

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240522-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240522-py3-none-any.whl
Algorithm Hash digest
SHA256 e095c938eaee88abd9678e97be2862e76905a38a3290ba1cab9aed3ad1af1080
MD5 a98d32ebec06df3e91bd639e7583a567
BLAKE2b-256 ef51e3deec0516c95b18108afdc2d5376919dcaaf1b3d0f1a01569a1e181e529

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page