Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240524.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240524-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240524.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240524.tar.gz
Algorithm Hash digest
SHA256 e6a4e6f5031ada06cd009ca946d011856b12aa48de9c1b8781da2f9a7fd66635
MD5 2e527a3cacf101a010caa453c107b2e5
BLAKE2b-256 31ff3adabe26bd44946318977e73aa0a98a13e0d51db43cf606eb973e515508b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240524-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240524-py3-none-any.whl
Algorithm Hash digest
SHA256 61847ea48effb7d494942e60c84de9a9a377b455d9d9f22883d1b5332b2146ac
MD5 f58980524de91d47b3f47f34ec5656a9
BLAKE2b-256 2adf87eef58b75ba708bd555eb8a28fa5bc61c96eedb3aa44cec12e26567be9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page