Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240525.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240525-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240525.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240525.tar.gz
Algorithm Hash digest
SHA256 b12f957c435d7ba9c91ed298cb0b7094b140ec22dbb4079ee4156eca6954b7b4
MD5 4d5723e4c8860c2326d5376a4ea65f66
BLAKE2b-256 07fae733023adee7d840f09379c162d8c762ed30ce5743bb44ccb464ebd0b3c6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240525-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240525-py3-none-any.whl
Algorithm Hash digest
SHA256 3bbd9489bb6a2c757d119821cd0792051c8f6028219adb749fe6d19dd09dde23
MD5 e3074a41a81fa66ea8c22d444c09a604
BLAKE2b-256 7718d6ee8a691ea6382f668aa3426cca0554a0528df6ba3933b64f357ecc33bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page