Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240526.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240526-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240526.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240526.tar.gz
Algorithm Hash digest
SHA256 36cd6101ef68117601c450eb99570e5ccca2bc8fafee95e639da1b6abe0e3614
MD5 db2528c6883286ef2eb2da4f8ec385f0
BLAKE2b-256 0acee5571d67d6a791dcbf473324566d61ccf39eb54f1ecc809b1d559b76435b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240526-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240526-py3-none-any.whl
Algorithm Hash digest
SHA256 1ff3670f2e1360eae1bc3e91bd13d76043106861f6ec86557c5aa6dcb494bc7f
MD5 c8dccde132dcd74d594d852da3c0c31b
BLAKE2b-256 2817197bfc67fc745b1c501e8776a83b601c3a83f1babd72fd972f4d130fe0ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page