Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240527.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240527-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240527.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240527.tar.gz
Algorithm Hash digest
SHA256 c91732a817f93e4b6665b24e10558ff8e8c12ccf7be6d6501e173e9ed7482233
MD5 cbc218f8918ffd553ecee39daa7aeac0
BLAKE2b-256 b523f0cdd5503d64b7a822dd66c83a0f7c7343a7a3e47737c4fdabe78ee43117

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240527-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240527-py3-none-any.whl
Algorithm Hash digest
SHA256 f619f474c25004a9e5e9275ce2ca57f1a94d4cb46ec87893e62ccbec022536d7
MD5 bcb8161a7f9b3e544b9aa16600cf32ed
BLAKE2b-256 4f3a480dea0584158e51560d855efcc0e42ced0afe6ecd3a402de617c0bfee38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page