Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240528.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240528-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240528.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240528.tar.gz
Algorithm Hash digest
SHA256 180acb52c44fc46e9c3cd967e4a0a96b85a7447b06d9854a98357f10dd03faab
MD5 be75682bd1075e6f9e66bdfac8133710
BLAKE2b-256 0394217025545d477e0e276e4db2763bccde78b4863175ebc69ae1539f209be0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240528-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240528-py3-none-any.whl
Algorithm Hash digest
SHA256 8aea6c25c0861779d9924461f943f51c99e4f664e3578795c02cced16f03fd26
MD5 a3b0831971501bd845819cd961c91bf6
BLAKE2b-256 bca1cce5564e7a5bfadc404ddba10e79ad91e28570dfa019de4d0abe31477fae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page