Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240530.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240530-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240530.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240530.tar.gz
Algorithm Hash digest
SHA256 b202eb48809214e63f0a4ad29ce9ff82a2bf96ed0ca85734d4c38103ce8a8fd8
MD5 483a10b648f1f8d6d124050c84d5f72e
BLAKE2b-256 11c878a5542368a933b16f8bbad15da31d255c65e05155a5467307b70f03c6b2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240530-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240530-py3-none-any.whl
Algorithm Hash digest
SHA256 2b052d30043c008fc2c3dc4050a6355f52d72f8140f801bb10f43474bcc0fa56
MD5 ba19183912d88907802c25922997bb20
BLAKE2b-256 634ea39d933c8c09c86d3128e866b0bec40a53681525fda096585d3fabcc0f05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page