Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240531.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240531-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240531.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240531.tar.gz
Algorithm Hash digest
SHA256 829ba0423ac40ea46ff711bfd5611cc1305982e7b5ac6bbe5054d8f048420c3e
MD5 f0c3cbf81cbfa0b22580048a8c2ec724
BLAKE2b-256 5d9ba1f49892f52b30bb1a7b1f9552e980306da2e3ffd3e8ecd67ce0f199584c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240531-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240531-py3-none-any.whl
Algorithm Hash digest
SHA256 06603a3f79f9793317d56360faa0873f59c2354999ffba6536b0bccba84d9f0f
MD5 8080bcfae730b09f7d5491d38f839f3c
BLAKE2b-256 8e4cbc8eae6b810b86e03d3ba27879cde4cc4008f946109db5564d90709d4bae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page