Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240601.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240601-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240601.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240601.tar.gz
Algorithm Hash digest
SHA256 80c87ead07ed36201499cff49339fc1dd6f60c6718893fb028e329d56d845a0e
MD5 86bcc963eb6de692d469928fd8a982a3
BLAKE2b-256 700c12a2a634cd8ad759a3f1685044effbbb4f1a686bcf423501053d2013c37b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240601-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240601-py3-none-any.whl
Algorithm Hash digest
SHA256 27f4be464c9d12747a9d6fdb1bff640281d06bbe3353f720118b59459816c391
MD5 b3db8bc487df21b2fe014dc80b442042
BLAKE2b-256 6e582d692d5c372ed2da639c6240e5c5d9e6f2c9671170b7e58b80e52a2acfff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page