Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240602.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240602-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240602.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240602.tar.gz
Algorithm Hash digest
SHA256 7e8c7a66fcaeb5b25a5878555baf6c90527cfe267b7e7e989535247eaf00c309
MD5 990c5881cc1699e4ff84469ce2ac17cc
BLAKE2b-256 df2ced25b699cc3ff678948fab2e7b3b2c8ac2d3357add4d9786a5574545242a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240602-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240602-py3-none-any.whl
Algorithm Hash digest
SHA256 4c9cc2b8832944cbf1292b863be27fd47cd5f7f18840db439f429b6c7c6764c9
MD5 f9b2278539e607f4797cb8e853cd7f40
BLAKE2b-256 67e8c8304bdd6eec8a813525d57b68a455423803e74f14db3c163ec792588fef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page