Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240603.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240603-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240603.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240603.tar.gz
Algorithm Hash digest
SHA256 f8ec6d92c21387cf8e301130ac32e6eb924dd2484cef861d88a0b83e601a250c
MD5 6c1f11e6c874140d7041fe2180e5ffcd
BLAKE2b-256 7ef8421302ba3fb1eee304171a4053affd0546eadd4ec34fd975a906b83ef8f2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240603-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240603-py3-none-any.whl
Algorithm Hash digest
SHA256 5cc7545f9af24b288c6b9adcb03aabb484fb706d7bb24b48d0706add0f7732ee
MD5 32041ff7130512f0eedc348e054c1e09
BLAKE2b-256 8a1d116b11704ad1a274960d3cbf4f77d39ad274fc51cbe9231f1c9750403da2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page