Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240604.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240604-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240604.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240604.tar.gz
Algorithm Hash digest
SHA256 6d6c906b367b03b5e3ae5a46beca2168992f64114999daa57d9abcd66337a409
MD5 2dddf3ac8cace2c6b182c0d3f7446560
BLAKE2b-256 b371fed4ad55d1e5e3a4c23947be9830854f7a060722647795257a900aaa82dd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240604-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240604-py3-none-any.whl
Algorithm Hash digest
SHA256 992833d623a3ae8b2cd2693b57f5084dd535289c09e19e79e1bbbea7d87c3784
MD5 74b00fb9e3f61c21aa05d979c8f93981
BLAKE2b-256 984a4c31587a107471fc8be12d72126ab7c1f2143a554f3c5db592a50a923fdb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page