Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240605.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240605-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240605.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240605.tar.gz
Algorithm Hash digest
SHA256 a3f4f0832dc3ac8f5f6d0790a59769906a996c4590e0c0c828551418e14f1d9f
MD5 339441df3ec3b6e286df626d391cddfb
BLAKE2b-256 b5ae5c225ee9988bf409b4a5d0af2f5784fa4f6a1db37f7da47e0bcc1133048e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240605-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240605-py3-none-any.whl
Algorithm Hash digest
SHA256 e13fd4e484e2c902dd2008630d37cdb9e07e0e4ef5f4172a5b707c0f801a77cc
MD5 9e56889fb01e60008640a987789552f3
BLAKE2b-256 59151dba4d799ca2289e3c08342071c27d552dcb874ebd1f363628e72c156d60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page