Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240606.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240606-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240606.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240606.tar.gz
Algorithm Hash digest
SHA256 951f4bc6c618a69287f30c2bde31049c45b0200c8e8f2d1ea0681e634224605c
MD5 b198a7d56dde23788d9f6096d255b988
BLAKE2b-256 4ec3b5b7cd036bf71859de18ae4ed2754c402e1ceb7a8bde5214cf8507a3e573

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240606-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240606-py3-none-any.whl
Algorithm Hash digest
SHA256 19739635628267ec3bee6d22e5494c093afc67fe50bd276f7fa1e1e60624cba0
MD5 4c2c0acf2f71f6ba4a9eff3458fafaa9
BLAKE2b-256 6d168e9b881bf825b6be58b6cb5f83ca1a9566343d4990ccf4613c804c3f9e11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page