Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240607.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240607-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240607.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240607.tar.gz
Algorithm Hash digest
SHA256 b0e767beb12122981a29c7ae3ee9236b8156d659c5b54dfbc4b9f45c00b16285
MD5 2e5542c51f0b46c147d097c492a6e51c
BLAKE2b-256 4b1cc88632a94b4d69ad337823296d4da1ba63094a094a3a0e855ade58b9360a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240607-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240607-py3-none-any.whl
Algorithm Hash digest
SHA256 5e64307d2e6042d6f5cd1fec9ad4c61f9f507a86fc3407a7c86af1c11f75c7da
MD5 0634f23a8f16aae85163d57362c48977
BLAKE2b-256 cb781c869f6f1b9b541631cf064323973a670571f911f2a0f80815b0a9a0bbc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page