Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240608.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240608-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240608.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240608.tar.gz
Algorithm Hash digest
SHA256 7ca264fa2e401365bd25da4c8ed0edd6c7dc051e14f043c02f794ee045c699ac
MD5 b33add22d92871e51573fd4272267c4c
BLAKE2b-256 bfc7bbc138a6e250c7d0298c6bb0b059f8447e51b459b8e12962f70cee7c33ba

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240608-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240608-py3-none-any.whl
Algorithm Hash digest
SHA256 eb92c93463eace427efbaa6f46944b2ff279ce8611976e8f62e298003fd540bf
MD5 29a708c739f2a9c4aa8a0cd3a95c7730
BLAKE2b-256 e2945e9e59457f5f887a00ab28255c9bf77e2ad1862077de2a0cabcd88ac1ab8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page