Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240609.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240609-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240609.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240609.tar.gz
Algorithm Hash digest
SHA256 118627c5365fe2c37041993faccf3b7ba7a39f2df9f295643a8f3e68a031d4ab
MD5 61c8bd52af79ba206ecaba5d42131aa7
BLAKE2b-256 ba8dfa68b1b752b9d592896cd4dbccf2947fc2ca84b273ec409a8792bcba8159

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240609-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240609-py3-none-any.whl
Algorithm Hash digest
SHA256 476c68e56a8e52e809b192d0d65a2f8472c5379078cb8893d863772f7dd1f442
MD5 47c8c29d78a02c18f6ac3647f5dc09d3
BLAKE2b-256 d8c95d79870c3fa25e57797402ffc550b030f7127b5712decced9a89428a3e95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page