Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240610.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240610-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240610.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240610.tar.gz
Algorithm Hash digest
SHA256 2dd4db4e4b67642285f50868b2b9234f89cf8cac5e81749924a6987a8d44158b
MD5 ebf875df889ec6a11927542f78c5e926
BLAKE2b-256 83083e02a9315241c5abb0878ecbe9e58ccbf38a3c866ffd6069a76311fa7099

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240610-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240610-py3-none-any.whl
Algorithm Hash digest
SHA256 9cf48f0f9f25968f366210ec95e7267aeff99f539f0707232b883f24c8ad82ad
MD5 cd2d3991ba180992cd069c403dd24b9e
BLAKE2b-256 4497679a8a98f1d53c358d7bb61cac4a26d80b526c3179b510c34a878cc0239c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page