Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240611.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240611-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240611.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240611.tar.gz
Algorithm Hash digest
SHA256 24a4e12e1f2939d2188378c6f227d0d8e1929aef9b54bc88a9320c3633393196
MD5 7fd8420ca91cdd3bd6d96618975af06b
BLAKE2b-256 6af619082f26a37776970263f0f2a48b5e08947169c9025aac1948b1918b9a97

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240611-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240611-py3-none-any.whl
Algorithm Hash digest
SHA256 84fea5f6241ccd95c2e52e1e05e62970155d4339f4247c45aaff37a7dc574d19
MD5 ab0e2e65713549d4c0208bd88594eca1
BLAKE2b-256 00fbf3f8905e8aa782508ab906a06c37498306b3015fd74de58f64cea94b3bae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page