Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240612.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240612-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240612.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240612.tar.gz
Algorithm Hash digest
SHA256 9540a6d3fdc70c0b5bfb7b7c18a013b82dc2950979ebc4c78c71e3d065888947
MD5 7f23355322dbab64a7584c9188fd7532
BLAKE2b-256 bdc5f9a88268d9a3654cca4b2123b22966d36fdf9da377b2242abb110d8023d5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240612-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240612-py3-none-any.whl
Algorithm Hash digest
SHA256 fa4b0b2c7ecc78616903cc5aff35cd9a8ac6ed6d38a070b127e5602dcfd328b5
MD5 1af0ed23ba9e5289e8aa1e93aed02005
BLAKE2b-256 c6db1b9d44e2f5ce0c6c64806fc5e0920cc45b2d60fe7a55f257e684ae72f9cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page