Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240613.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240613-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240613.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240613.tar.gz
Algorithm Hash digest
SHA256 c79dbe2cfafc5471100bd20d0286ab0a9d5ac444ebfb04d892757f1905926ded
MD5 7f7f8c1c85dce1e813b41632580be552
BLAKE2b-256 be54e323b61263089c3db37206c441099f268c817260ce891b389db9696ad63f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240613-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240613-py3-none-any.whl
Algorithm Hash digest
SHA256 47e912567c2d40bdef4c4ee72d36d6e7ffbfbd887d8f0969e333032f06c4cd5d
MD5 5f94b301e1e56e65c8b9e6dde3c6811a
BLAKE2b-256 73239c209e6e964fb2f8193fff60d85414a801001d8e86194d3dc0fc9489c7df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page