Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240614.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240614-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240614.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240614.tar.gz
Algorithm Hash digest
SHA256 9f1bebb333c7f34e88af942dd63d3080069e65c3945d9cd5207e0ebfd7543f07
MD5 5af8281cc7896a10cd94355d3ec74fdc
BLAKE2b-256 491ea62d8142c2ad87a04b93ebd4b524369b86dada8949eb111c56cdcb63e920

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240614-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240614-py3-none-any.whl
Algorithm Hash digest
SHA256 e26f2e9114c025f22222a2d6461a552cc5f88d3264a208ec0f412f7c31075dcb
MD5 db680be3a0b84160d5972e39f304c0e1
BLAKE2b-256 096a7b2c7e28965775ddde8d281c224e6b140560b70f19097f5c4a73f63041c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page