Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240615.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240615-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240615.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240615.tar.gz
Algorithm Hash digest
SHA256 0d6530d0f1e2970dc9478f0245e0d66fceae02c007b7d8e7a1f9b96452495d1f
MD5 9c6c69f07ed7ed0aa0c72c849b5ca4a5
BLAKE2b-256 ced3a8fe7bcb96e6d3708043f5f85d201f0c84dda0c89130e99f599c5a1e7d53

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240615-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240615-py3-none-any.whl
Algorithm Hash digest
SHA256 e86dd21a7e542a51b58a189d872e0716f70f960171e1e6bf863cb7780a8acd8d
MD5 b7862484c4f5ce31ee9f399b24cb919d
BLAKE2b-256 3bee4d48d7a1c99d89943c20fd49649450e5b60c8bf85bb4a84736e0e3b91ce0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page