Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240616.tar.gz (65.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240616-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240616.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240616.tar.gz
Algorithm Hash digest
SHA256 ec9b5037a4d976123a97c21c4a8505a81d1d47439bb8646d38e1164eebae8149
MD5 023c31cdd361627c1ee552722c337a1b
BLAKE2b-256 0202e2c172a617ad2cf057211897d8f99f8dd16f13cd7e155d663bd884e8e635

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240616-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240616-py3-none-any.whl
Algorithm Hash digest
SHA256 ecc9bfc85f0e891cc2e0bee08b546af04c43588f8bd69bfae086ade14787fd90
MD5 95dba3258be8e267075db4de8679162f
BLAKE2b-256 7ad035770bd929a845e002032409d35da2452a73b0705915d9e370b4f69f62c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page