Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240617.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240617-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240617.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240617.tar.gz
Algorithm Hash digest
SHA256 ab55873e41e7fe16b568baee3ba00952f248ad997d6c006f2e1fc4b1910f356d
MD5 c28c2decd621d097795ec511e0c1fa9b
BLAKE2b-256 4ddd42d7f1156a5300a389bbd1a7194076003b197007c5de326b96db89608e10

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240617-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240617-py3-none-any.whl
Algorithm Hash digest
SHA256 55ce5529ee568c3d3624914be93f7ff87d3eb1ec82785391f1f60f60dfa4196e
MD5 d129ffbba309dfe92de9a03d157b888d
BLAKE2b-256 38a1c88b6a03b401a527167dc079bd722559c1cdb0aad2eb36f32d06f48cfb97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page