Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240618.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240618-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240618.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240618.tar.gz
Algorithm Hash digest
SHA256 be848bfb0d69d233f2d7ff2c070109fdf025cc68c23f6a331580bd918d1d2ded
MD5 9f169399a37bcef37ce9a22ff5f24abb
BLAKE2b-256 a7bf43c07d2e222e93ae5fa0ee338953fa84c88b2154eebe71887354a203b878

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240618-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240618-py3-none-any.whl
Algorithm Hash digest
SHA256 fb6f495dfe53c52578802d046d99b57bc279e0790789a08822f9b5ed945c972a
MD5 1d5cedf4759a66942c1bc87bd37f1dc5
BLAKE2b-256 aaa4cb338e2b1196a3ac2abcb6622809bb2c8762bc1cb452fa84c4814c3c49a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page