Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240619.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240619-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240619.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240619.tar.gz
Algorithm Hash digest
SHA256 5933f64e45c73a827a6a4585e780121ba0e12d3b30387ebf5875fb8b98594cd9
MD5 19c9f92c0398abd3c6d0787c0d530ab7
BLAKE2b-256 c05e27d14b2e1450b692c53a992b2b0794a06cca0fcda7136d1d8eb4c9502fb3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240619-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240619-py3-none-any.whl
Algorithm Hash digest
SHA256 e4245e27d4c04e0d2f036c29ddb1228b7dd052834bc3fcd2da6284c247c22143
MD5 074329cbe7cb06e71b70bdc566bdf5d6
BLAKE2b-256 a19899bd7fb3461c03b9a8959c4240655af692975b363c13a8793afe9799b2ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page