Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240620.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240620-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240620.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240620.tar.gz
Algorithm Hash digest
SHA256 c6be6785c1807fb1a6c04c919974d407780928cb18874c26fb44387cb1281f9f
MD5 8f701535fdc7ea8fc946875d3a6ada22
BLAKE2b-256 6fffb0394bf0ec4b7370d04bcf6d122b697de833f1461342ff7d0192b15a41ad

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240620-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240620-py3-none-any.whl
Algorithm Hash digest
SHA256 82534f4bb328a0ce774811e439564fb5436157045930970ef8402268285ef9de
MD5 1520a8b6a9bf41f88e3e8ff9da383125
BLAKE2b-256 722e930bd0f420531a2f7c60b29b61edf8889c8a04054f22f49ead55add672d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page